Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Skelet Muscle ; 5: 25, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26257862

RESUMO

BACKGROUND: The hormone adiponectin (ApN) is decreased in the metabolic syndrome, where it plays a key pathogenic role. ApN also exerts some anti-inflammatory effects on skeletal muscles in mice exposed to acute or chronic inflammation. Here, we investigate whether ApN could be sufficiently potent to counteract a severe degenerative muscle disease, with an inflammatory component such as Duchenne muscular dystrophy (DMD). METHODS: Mdx mice (a DMD model caused by dystrophin mutation) were crossed with mice overexpressing ApN in order to generate mdx-ApN mice; only littermates were used. Different markers of inflammation/oxidative stress and components of signaling pathways were studied. Global force was assessed by in vivo functional tests, and muscle injury with Evans Blue Dye (EBD). Eventually, primary cultures of human myotubes were used. RESULTS: Circulating ApN was markedly diminished in mdx mice. Replenishment of ApN strikingly reduced muscle inflammation, oxidative stress, and enhanced the expression of myogenic differentiation markers along with that of utrophin A (a dystrophin analog) in mdx-ApN mice. Accordingly, mdx-ApN mice exhibited higher global force and endurance as well as decreased muscle damage as quantified by curtailed extravasation of EBD in myofibers. These beneficial effects of ApN were recapitulated in human myotubes. ApN mediates its protection via the adiponectin receptor 1 (AdipoR1, the main ApN receptor in muscle) and the AMPK-SIRT1-PGC-1α signaling pathway, leading to downregulation of the nuclear factor kappa B (NF-κB) and inflammatory genes, together with upregulation of utrophin. CONCLUSIONS: Adiponectin proves to be an extremely powerful hormone capable of protecting the skeletal muscle against inflammation and injury, thereby offering novel therapeutic perspectives for dystrophinopathies.

2.
Endocrinology ; 151(10): 4840-51, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20702578

RESUMO

Adiponectin (ApN) exhibits metabolic and antiinflammatory properties. This hormone is exclusively secreted by adipocytes under normal conditions. We have shown that ApN was induced in tibialis anterior muscle of mice injected with lipopolysaccharide (LPS) and in C2C12 myotubes cultured with proinflammatory cytokines. We hypothesized that muscle ApN could be a local protective mechanism to counteract excessive inflammatory reaction and oxidative damage. To test this paradigm, we examined whether muscles of ApN-knockout (KO) mice exhibit a higher degree of oxidative stress and apoptosis than wild-type mice when challenged by ip LPS and whether these abnormalities may be corrected by local administration of ApN. Eventually we investigated the effects of ApN in vitro. When compared with wild-type mice, ApN-KO mice exhibited myocyte degenerescence, especially after LPS. Myocytes of ApN-KO mice also displayed much stronger immunolabeling for markers of oxidative stress (peroxiredoxin-3/5 and heme oxygenase-1) as well as for a lipid peroxidation product (hydroxynonenal). Expression of TNF-α, caspase-6, a marker of apoptosis, and nuclear factor-κB was enhanced as well. Eventually muscle electrotransfer of the ApN gene, which did not induce any rise of systemic ApN, corrected all these abnormalities in LPS-injected ApN-KO mice. Likewise, ApN attenuated LPS-induced production of proinflammatory cytokines and activation of nuclear factor-κB in C2C12 cells. Thus, induction of ApN into skeletal muscle in response to an inflammatory aggression appears to be a crucial mechanism to counteract in an autocrine or paracrine fashion excessive inflammatory damage, oxidative stress, and subsequent apoptosis.


Assuntos
Adiponectina/administração & dosagem , Adiponectina/farmacologia , Lipopolissacarídeos , Doenças Musculares/induzido quimicamente , Doenças Musculares/metabolismo , Adiponectina/genética , Adiponectina/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Apoptose/fisiologia , Peso Corporal/genética , Células Cultivadas , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Injeções Intralesionais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Doenças Musculares/patologia , NF-kappa B/metabolismo , NF-kappa B/fisiologia , Tamanho do Órgão/genética , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...